Arkansas Department of Environmental Quality Water Quality Management Plan Update Summary Sheet

Date: 5/12/2016

 □ New Permit
 □ Renewal Permit
 □ Amended Permit

Type of Discharge: Industrial Wastewater (Outfall 001); Domestic Wastewater (Outfall 003)

Contaminated Stormwater (Outfalls 002, 006, 007)

Facility Name: El Dorado Chemical Company

Permit No.: AR0000752

Design Flow Rate (MGD): 2.8 (Outfall 001); 0.017 (Outfall 003); Variable (002, 006, 007)

Receiving Stream: unnamed tributary of Flat Creek

HUC + Reach Code: 08040201+606 7010: 0 cfs

Planning Segment: 2D County: Union

Proposed Effluent Limits in mg/L (CBOD5/TSS/NH3-N/DO):

Outfall 001: May - October: */30/2.43/4.0 *No CBOD5 limit included based on conservative assumed value in model

November – March: */30/5.50/5.0 *No CBOD5 limit included based on conservative assumed value in model

April: */30/2.43/5.0 *No CBOD5 limit included based on conservative assumed value in model

55 WAR SECONDERS - THE - 40 1 No. 1 TAY SECONDER - THE SECONDER - THE SECONDER - THE SECONDER - THE SECONDER -

Outfall 003: May – October: 10/15/2.43/4.0 November – March: 10/15/5.50/2.0

April: 10/15/2.43/2.0

TMDL Limits (if any): The following monthly average limits are based on *TMDLs for Chloride, Sulfate, TDS, and Ammonia in the ELCC Tributary, Arkansas*, dated 10/3/2002:

Outfall	Parameter	Concentration mg/L	Mass lb/day
001/003 (April-October)	NH3-N	2.43	Report
001/003 (November-March)	NH3-N	5.50	Report
Sum of 001/003 (April-October)	NH3-N	N/A	37.90
Sum of 001/003 (November-March)	NH3-N	N/A	85.78
002/006/007 (April-October)	NH3-N	0.00	Report
002/006/007 (November-March)	NH3-N	0.32	Report
Sum of 002/006/007 (April-October)	NH3-N	N/A	0.00
Sum of 002/006/007 (November-March)	NH3-N	N/A	5.16
001/003/002/006/007	Chlorides	19	Report
Sum of 001/003	Chlorides	N/A	265
Sum of 002/006/007	Chlorides	N/A	73
001/003/002/006/007	Sulfates	41	Report
Sum of 002/006/007	Sulfates	N/A	33
Sum of 001/003	Sulfates	N/A	503
001/003/002/006/007	TDS	138	Report
Sum of 001/003	TDS	N/A	1338
Sum of 002/006/007	TDS	N/A	635

Current Effluent Limits in WQMP in mg/L (CBOD5/TSS/NH3-N):

Outfall 003: May – October: 10/15/5

November – March: 10/15/10 April: 10/15/10

Justification (Sag = Minimum Modeled Value ≠ Difference in Value):

Reach No.	Length (miles)	DO _C (mg/L)	Sag _C (mg/L)	Distance to Sag _C (miles)	DO _P (mg/L)	Sag _P (mg/L)	Distance to Sag _P (miles)
1	0.1	2.0	4.0	0.0	5.0	6.406	0.0
2a	1.7	2.0	1.981	0.55	5.0	5.247	0.7
2b	0.2	3.0	2.966	0.0	5.0	5.449	0.0

Values in above table are from a modeling analysis dated 12/9/2015. Reach 2a is portion of reach where DO WQS is 2.0 mg/L during critical season. Reach 2b is portion of reach where DO WQS changes to 3.0 mg/L during critical season.

Outfall Location (Lat/Long): Outfall 001: 33° 15' 33.8" N; 92° 41' 14.2" W

Outfall 002: 33° 15' 45.3" N; 92° 41' 20.3" W Outfall 003: 33° 15' 38" N; 92° 41' 07" W Outfall 006: 33° 16' 03" N; 92° 41' 02" W Outfall 007: 33° 16' 6.3" N; 92° 41' 16" W

Remarks: This is for the reissuance of the discharge permit for this existing facility.

The 208 Plan is being updated to include the following changes. These 208 Plan updates will be public noticed with the draft permit:

- DO instantaneous minimum limits of 5.0 mg/L during November April and 4.0 mg/L during May – October were added at Outfall 001 based on the 5/12/2016 modeling analysis.
- DO instantaneous minimum limits of 2.0 mg/L during November April and 4.0 mg/L during May – October were added at Outfall 003 based on the 5/12/2016 modeling analysis.
- NH3-N monthly average concentration limits of 2.43 mg/L during April-October and 5.5 mg/L during November-March were added at Outfalls 001 and 003, based on TMDL dated October 3, 2002.
- NH3-N monthly average mass limits of 37.9 lb/day during April-October and 85.78 lb/day during November-March for the sum of Outfalls 001 and 003 were added based on TMDL dated October 3, 2002.
- NH3-N monthly average concentration limits of 0.0 mg/L during April-October and 0.32 mg/L during November-March were added at Outfalls 002, 006, 007, based on TMDL dated October 3, 2002.
- NH3-N monthly average mass limits of 0.0 lb/day during April-October and 5.16 lb/day during November-March for the sum of Outfalls 002, 006, 007 were added based on TMDL dated October 3, 2002.
- Chlorides monthly average concentration limit of 19 mg/L, Sulfates monthly average concentration limit of 41 mg/L, and TDS monthly average concentration limit of 138 mg/L at Outfalls 001, 003, 002, 006, and 007 were added based on TMDL dated October 3, 2002.
- Chlorides monthly average mass limit of 265 lb/day, Sulfates monthly average mass limit of 503 lb/day, and TDS monthly average mass limit of 1338 lb/day, for the sum of Outfalls 001 and 003, were added based on TMDL dated October 3, 2002.

ADEQ

A R K A N S A S Department of Environmental Quality

OUA 0	137E	33.2472	
Date	mole NH3	-92,6842 mole BODS	
3-10-97	0.303	-	
5-27-97	0.399	3.42	
,-3-97	0,206	1.29	
1-22-97	0.253	2.55	
2-1-97	0.434	3.36	
2-4-2001	0.050	1.93	
Geo Means	0.22	2.35	6
			1 de la contraction de la cont
00	?	000	tributary to

Model Input Data

Facility Name: El Dorado Chemical Company (Outfalls 001 and 003)

Permit Number: AR0000752

Outfall Coordinates: 33° 15' 33.8" N; 92° 41' 14.2" W (Outfall 001)

33° 15' 38" N; 92° 41' 07" W (Outfall 003)

W.S. Drainage Area (mi²): less than 10 square miles at outfall, until 1.7 miles

downstream of outfall 001 where watershed becomes greater than 10 square miles.

Ecoregion: Gulf Coastal

	Critical Season (May-Oct.)		Primary Seaso	on (NovApr.)
	Reach 1	Reach 2	Reach 1	Reach 2
D.O. Standard (mg/L)	2.0	3.0	5.0	5.0
Temp. Standard (°C)	30	30	22	22
Q stream (cfs)	0.026	4.37	1.0	5.37
Velocity stream (fps)	0.01	0.19	0.10	0.25
Depth stream (ft)	0.12	0.89	0.50	0.75

Modeled Flow Rate (MGD): Outfall 001 = 2.8 MGD, Outfall 003 = 0.017 MGD

Planning Segment: 2D

Receiving Stream: Unnamed tributary, thence to Flat Creek

HUC + reach code: 08040201 + 606 Permit type: Industrial

Engineer: 50

Input Model Coefficients

Reach 1

Input value	Justification
2.3	EPA Guidance
0.4	MOA
0.4	MOA
0.5	MOA
39.1 (critical season)	Calculated by Model using
11.5 (primary season)	O'Conner Dobbins
	2.3 0.4 0.4 0.5 39.1 (critical season)

Reach 2

Input value	Justification
2.3	EPA Guidance
0.4	MOA
0.4	MOA
1.0	MOA
6.6 (critical season)	Calculated by Model using
9.9 (primary season)	O'Conner Dobbins
	2.3 0.4 0.4 1.0 6.6 (critical season)

Engineer: 513

Date: 5-12-2016

Quick Calculator	Texas Original Default v	alues ab	out 80th percei	it values	
0 Headwater in CFS	0.088886	0.5	0.492814 0.4		0.1 Accum
0.017 Discharger 1 in MGD	Reach I Velocity	FPS 0.014	Depth 0.115		5.867 MGD 0.017
2.8 Discharger 2 in MGD	Reach 2 Velocity	0.186	Depth 0.888	Width 2	6.450 2.817
Discharger 3 in MGD	Reach 3 Velocity	0.186	Depth 0.888	Width 2	6.450 2.817
Discharger 4 in MGD	Reach 4 Velocity	0.186	Depth 0.888	Width 2	6.450 2.817
Discharger 5 in MGD	Reach 5 Velocity	0.186	Depth 0.888	Width 2	6.450 2.817
Discharger 6 in MGD	Reach 6 Velocity	0.186	Depth 0.888	Width 2	6.450 2.817
Discharger 7 in MGD	Reach 7 Velocity	0.186	Depth 0.888	Width 2	6.450 2.817
Discharger 8 in MGD	Reach 8 Velocity	0.186	Depth 0.888	Width 2	6.450 2.817
Discharger 9 in MGD	Reach 9 Velocity	0.186	Depth 0.888	Width 2	6.450 2.817
Discharger 10 in MGD	Reach 10 Velocity	0.186	Depth 0.888	Width 2	6.450 2.817
1 CFS is	0.64631674 MGD				
1 MGD is	1.547229 CFS				

Beginning of Reach Number

*****		******	*****
*	SIMPLIFIED	METHOD PROGRAM	*
*	COMPLETE	INPUT LISTING	*
*********	*******	*******	*****
		,	

5/12/2016 752-C

--*-*-* Run Information *-	*-*-*-*		,
Name of receiving stream			UnTrib/FlatCreek
Number of discharges		itateodonos.	2
Number of reaches			
Reaeration type			
Run title			EDCC_Critical
	w w w w	2 128	
--*-* Upstream Parameters	*-*-*-*		
Parameter Flow	1-5-1	Value	Comment
	(cfs)	0.000	
Temperature	(°C)	30.000	750
Dissolved Oxygen	(mg/l)	6.525	75%sat erstudy
5-Day BOD Ult. CBOD / 5-Day BOD	(mg/1)	2.350 2.300	OUA137E
pH	((())	7.000	
Ammonia	(su) (mg/l)	0.220	OUA137E
Alkalinity	(mg/1)	-0.000	OUAI37E
AIRGITHICY	(1119/11)	-0.000	
--*-* Effluent Parameters	*-*-*-*	-*	
BILIAGIC TATAMCCCIS			
Number of Discharges =	2		
	~		
For Discharge Number 1 (EDCCo	utfall 003	()	W
Parameter		Value	Comment
Flow	(MGD)	0.017	Design Q =0.017
Temperature	(°C)	30.000	Reg. 2
Dissolved Oxygen	(mg/1)	4.000	permit limit
5-Day BOD	(mg/1)	10.000	permit limit
Ult. CBOD / 5-Day BOD		2.300	epa guidance
pН	(su)	7.000	assumed
Ammonia	(mg/1)	2.430	WLA from TMDL
Alkalinity	(mg/1)	-0.000	
Beginning of Reach Number		1.000	(6)
	. 6 17 0		
- 4급 - 1급	utfall 001		<u>e</u>
Parameter	(2400)	Value	Comment
Flow	(MGD)	2.800	permit
Temperature	(°C)	30.000	Reg. 2
Dissolved Oxygen	(mg/l)	4.000	permit limit
5-Day BOD	(mg/1)	20.000	CONSERV assume
Ult. CBOD / 5-Day BOD	/ === 1	2.300	epa guidance
pH Ammonia	(su)	7.000	assumed neutral
Ammonia	(mg/l)	2.430	WLA from TMDL
Alkalinity Beginning of Reach Number	(mg/1)	-0.000	
Property of the first of the fi		20 CICICI	

2.000

Number of Reaches = 2
Reaeration Type is O'Connor-Dobbins

For Reach Number 1				
Parameter	761460	Value		Comment
Length	(mile)	0.100		
Velocity Slope	(fps) (ft/mile)	0.014	epa	spreadsheet
Average Depth	(ft)	0.115	ena	spreadsheet
Temperature	(°C)	30.000	сра	Calculated
BOD Removal Rate	(1/day)	0.400		
NH3 Decay Rate	(1/day)	0.400		
Sediment Oxygen Demand	$(g/m^2/day)$	0.900		k20=0.5
Photosynthesis/respiration	(mg/L/day)	-0.000		
	950400004 0000004600	(= (=)	_	
Temperature-corrected BOD rem		(1/day)		.633
Temperature-corrected NH3 dec Calculated reaeration rate at		(1/day) (1/day)		.864 .139
Temperature-corrected reaerat		(1/day)		. 663
Calculated reach-averaged wid		(ft)		.324
		8 25		
For Reach Number 2				
Parameter		Value		Comment
Parameter Length	(mile)	1.900		
Parameter Length Velocity	(fps)	1.900 0.186	epa	Comment spreadsheet
Parameter Length Velocity Slope	(fps) (ft/mile)	1.900 0.186 -0.000	VC1.	spreadsheet
Parameter Length Velocity Slope Average Depth	(fps) (ft/mile) (ft)	1.900 0.186 -0.000 0.888	VC1.	spreadsheet
Parameter Length Velocity Slope Average Depth Temperature	(fps) (ft/mile) (ft) (°C)	1.900 0.186 -0.000 0.888 30.000	VC1.	spreadsheet
Parameter Length Velocity Slope Average Depth Temperature BOD Removal Rate	(fps) (ft/mile) (ft) (°C) (1/day)	1.900 0.186 -0.000 0.888 30.000 0.400	VC1.	spreadsheet
Parameter Length Velocity Slope Average Depth Temperature	(fps) (ft/mile) (ft) (°C)	1.900 0.186 -0.000 0.888 30.000	VC1.	spreadsheet
Parameter Length Velocity Slope Average Depth Temperature BOD Removal Rate NH3 Decay Rate	(fps) (ft/mile) (ft) (°C) (1/day) (1/day)	1.900 0.186 -0.000 0.888 30.000 0.400	VC1.	spreadsheet spreadsheet Calculated
Parameter Length Velocity Slope Average Depth Temperature BOD Removal Rate NH3 Decay Rate Sediment Oxygen Demand Photosynthesis/respiration	(fps) (ft/mile) (ft) (°C) (1/day) (1/day) (g/m²/day) (mg/L/day)	1.900 0.186 -0.000 0.888 30.000 0.400 1.720 -0.000	epa	spreadsheet spreadsheet Calculated k20=1.0
Parameter Length Velocity Slope Average Depth Temperature BOD Removal Rate NH3 Decay Rate Sediment Oxygen Demand Photosynthesis/respiration Temperature-corrected BOD removed	(fps) (ft/mile) (ft) (°C) (1/day) (1/day) (g/m²/day) (mg/L/day)	1.900 0.186 -0.000 0.888 30.000 0.400 1.720 -0.000	epa 0	spreadsheet spreadsheet Calculated k20=1.0
Parameter Length Velocity Slope Average Depth Temperature BOD Removal Rate NH3 Decay Rate Sediment Oxygen Demand Photosynthesis/respiration Temperature-corrected BOD remover Temperature-corrected NH3 decay	(fps) (ft/mile) (ft) (°C) (1/day) (1/day) (g/m²/day) (mg/L/day) oval rate ay rate	1.900 0.186 -0.000 0.888 30.000 0.400 1.720 -0.000 (1/day) (1/day)	epa 0.000	spreadsheet spreadsheet Calculated k20=1.0
Parameter Length Velocity Slope Average Depth Temperature BOD Removal Rate NH3 Decay Rate Sediment Oxygen Demand Photosynthesis/respiration Temperature-corrected BOD removed Temperature-corrected NH3 decay Calculated reaeration rate at	(fps) (ft/mile) (ft) (°C) (1/day) (1/day) (g/m²/day) (mg/L/day) oval rate ay rate 20° C	1.900 0.186 -0.000 0.888 30.000 0.400 1.720 -0.000 (1/day) (1/day) (1/day)	epa 0.0.6.	spreadsheet spreadsheet Calculated k20=1.0
Parameter Length Velocity Slope Average Depth Temperature BOD Removal Rate NH3 Decay Rate Sediment Oxygen Demand Photosynthesis/respiration Temperature-corrected BOD remover Temperature-corrected NH3 decay	(fps) (ft/mile) (ft) (°C) (1/day) (1/day) (g/m²/day) (mg/L/day) oval rate ay rate 20° C ion rate	1.900 0.186 -0.000 0.888 30.000 0.400 1.720 -0.000 (1/day) (1/day)	epa 0.0.6.8.	spreadsheet spreadsheet Calculated k20=1.0

--*-* Results for UnTrib/FlatCreek *-*-*-*

Discharge is to -- UnTrib/FlatCreek Run Title is -- EDCC_Critical

River Mile	DO	DO	BOD	BOD	NH3	NH3
	Predicted	Observed	Predicted	Observed	Predicted	Observed
2.000	4.000		23.000		2.430	
1.980	6.399		21.763		2.254	
1.960	6.459	121	20.593		2.090	
1.940	6.486	~ (19.485		1.938	
1.920	6.511		18.437		1.797	
1.900	4.015		45.828		2.425	
1.850	3.769	R2a	45.353		2.391	
1.800	3.561		44.884		2.358	
1.750	3.386		44.420		2.324	
1.700	3.241		43.960		2.292	
1.650	3.121		43.505		2.259	

1.600	3.022	43.055	2.227
1.550	2.943	42.609	2.196
1.500	2.880	42.169	2.165
1.450	2.831	41.732	2.135
1.400	2.795	41.300	2.105
1.350	2.769	40.873	2.075
1.300	2.753	40.450	2.046
1.250	2.745	40.031	2.017
1.200	2.743	39.617	1.989
1.150	2.747	39.207	1.960
1.100	2.757	38.802	1.933
1.050	2.771	38.400	1.906
1.000	2.788	38.003	1.879
0.950	2.809	37.609	1.852
0.900	2.832	37.220	1.826
0.850	2.858	36.835	1.801
0.800	2.886	36.454	1.775
0.750	2.915	36.077	1.750
0.700	2.946	35.703	1.726
0.650	2.977	35.334	1.701
0.600	3.010	34.968	1.677
0.550	3.043	34.607	1.654
0.500	3.078	34.248	1.630
0.450	3.112	33.894	1.607
0.400	3.147 3.182 R2a	33.543	1.585
0.350		33.196	1.562
0.300	3.217	32.853	1.540
0.250	3.252	32.513	1.519
0.200	3.288	32.176	1.497
0.150	3.323 R26	31.843	1.476
0.100	3.358	31.514	1.455
0.050	3.393	31.188	1.435
-0.000	2 420	30 065	4 44 2
-0.000	3.428	30.865	1.415

Ammonia

Alkalinity Beginning of Reach Number

******	*******	****	******	******
*	SIMPLIFIED	METHOD	PROGRAM	*
*	COMPLETE	INPUT	LISTING	*
******	******	*****	*******	******

752-P 5/12/2016

--*-*- Pun Information *-	a - ar - ar - ar - ar		
--*-* Run Information *-	*-*-*-*		
Name of receiving stream Number of discharges Number of reaches Reaeration type Run title			2 2
--*-*-* Upstream Parameters		4	
Parameter		-^ Value	Comment
Flow	(cfs)	0.970	
	(°C)		seasonalfishery
Temperature	12 (A 2100-115)	22.000	Reg. 2
Dissolved Oxygen	(mg/l)	6.525	75% sat erstudy
5-Day BOD	(mg/1)	2.350	OUA137E
Ult. CBOD / 5-Day BOD	/ LANE V	2.300	epa guidance
pн	(su)	7.000	assumed
Ammonia	(mg/1)	0.220	OUA137E
Alkalinity	(mg/1)	-0.000	
--*-* Effluent Parameters Number of Discharges =	*-*-*-*	- *	
For Discharge Number 1 (EDCCou	utfall 003)	
Parameter		Value	Comment
Flow	(MGD)	0.017	DesignQ = 0.017
Temperature	(°C)	22.000	Reg. 2
Dissolved Oxygen	(mg/1)	2.000	permit limit
5-Day BOD	(mg/1)	10.000	permit limit
Ult. CBOD / 5-Day BOD	3	2.300	epa guidance
рH	(su)	7.000	
Ammonia	(mg/1)	5.500	WLA from TMDL
Alkalinity	(mg/1)	-0.000	
Beginning of Reach Number	e si ik	1.000	
	utfall 001		
Parameter		Value	Comment
Flow	(MGD)	2.800	permit
Temperature	(°C)	22.000	reg.2
Dissolved Oxygen	(mg/l)	5.000	permit limit
5-Day BOD	(mg/1)	20.000	cserv assumptn
Ult. CBOD / 5-Day BOD		2.300	epa guidance
рн	(su)	7.000	
Ammonia	(max / 1)	5 500	WIN from TMDI

(mg/l) (mg/l)

5.500

-0.000 2.000 WLA from TMDL

--*-* Reach Information *-*-*-*

Number of Reaches = 2 Reaeration Type is O'Connor-Dobbins

For Reach Number 1				
Parameter	140000 - 140 - 15000	Value		Comment
Length Velocity Slope	(mile) (fps) (ft/mile)	0.100 0.100 -0.000	epa	spreadsheet
Average Depth Temperature BOD Removal Rate NH3 Decay Rate Sediment Oxygen Demand Photosynthesis/respiration	(ft) (°C) (1/day) (1/day) (g/m²/day) (mg/L/day)		epa	spreadsheet Calculated MOA MOA k20=0.5
Temperature-corrected BOD remo Temperature-corrected NH3 deca Calculated reaeration rate at Temperature-corrected reaerati Calculated reach-averaged widt	ay rate 20° C ion rate	(1/day) (1/day) (1/day) (1/day) (ft)	0. 11. 12.	.438 .467 .538 .101 .926
For Reach Number 2				
Parameter	2.15.1	Value		Comment
Length Velocity Slope	(mile) (fps) (ft/mile)	1.900 0.250 -0.000	to =	expected W
Average Depth Temperature BOD Removal Rate NH3 Decay Rate Sediment Oxygen Demand Photosynthesis/respiration	(ft) (°C) (1/day) (1/day) (g/m²/day) (mg/L/day)	0.750 22.000 0.400 0.400 1.120 -0.000	to =	expected W Calculated MOA MOA k20=1.0
Temperature-corrected BOD remore Temperature-corrected NH3 decade Calculated reaeration rate at Temperature-corrected reaeratic Calculated reach-averaged widter	ay rate 20° C Lon rate	(1/day) (1/day) (1/day) (1/day) (ft)	0. 9. 10.	438 467 930 415 400

Discharge is to -- UnTrib/Haynes Creek Run Title is -- EDCC_Primary

River Mile	DO	DO	BOD	BOD	NH3	NH3
	Predicted	Observed	Predicted	Observed	Predicted	Observed
2.000	6.406		5.869		0.359	
1.980	6.621	01	5.838		0.357	
1.960	6.808	K (5.807		0.355	
1.940	6.969	1000 500	5.776		0.353	
1.920	7.108 _		5.745		0.351	
1.900	5.417		38.463		4.536	
1.850	5.434	1220	38.257		4.511	
1.800	5.452	KLA	38.053		4.485	
1.750	5.468		37.849		4.459	
1.700	5.485		37.647		4.434	
1.650	5.501		37.446		4.409	

1.600	5.517	37.246	4.384
1.550	5.532	37.047	4.359
1.500	5.547	36.849	4.334
1.450	5.562	36.652	4.309
1.400	5.577	36.456	4.285
1.350	5.592	36.261	4.261
1.300	5.606	36.067	4.236
1.250	5.621	35.874	4.212
1.200	5.635	35.683	4.188
1.150	5.649	35.492	4.164
1.100	5.663	35.302	4.141
1.050	5.676	35.113	4.117
1.000	5.690	34.926	4.094
0.950	5.704	34.739	4.071
0.900	5.717	34.553	4.047
0.850	5.730	34.369	4.024
0.800	5.743	34.185	4.001
0.750	5.757	34.002	3.979
0.700	5.770	33.821	3.956
0.650	5.782	33.640	3.934
0.600	5.795	33.460	3.911
0.550	5.808	33.281	3.889
0.500	5.821	33.103	
0.450			3.867
	5.833	32.926	3.845
0.400	5.846	32.750	3.823
0.350	5.858 R2a	32.575	3.801
0.300	5.871	32.401	3.780
0.250	5.883	32.228	3.758
0.200	5.895	32.056	3.737
0.150	5.907 $R2b$	31.884	3.716
0.100	5.919	31.714	3.694
0.050	5.931	31.545	3.673
-0.000			
-0.000	5.943	31.376	3.653

